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The staggered grid and random sampling procedure used currently in the random choice 
method for solving hyperbolic equations like those for one-dimensional unsteady flows and 
two-dimensional axisymmetric and planar steady supersonic flows are reviewed and extended 
to include variable node spacing. A nonstaggered grid with variable node spacing, more con- 
venient random sampling process, and local time stepping are then introduced, and there use 
in significantly reducing computational time and costs in solving certain problems is discussed. 
These methods are easily applied in the random choice method for problems with more 
dimensions. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The random choice method (RCM) was developed to solve nonlinear hyperbolic 
partial differential equations and has been used successfully in solving gas-dynamic 
problems such as one-dimensional unsteady flows and two-dimensional planar and 
axisymmetric steady supersonic flows. This is essentially a finite-volume method, 
and it is explicit in that it solves a Riemann problem in each cell at one time level 
and then uses random sampling to assign or advance the solution to the next time 
level. The main advantages of the RCM are its simplicity and its ability to resolve 
discontinuities exactly without numerical dispersion or dissipation, without 
overshoots and undershoots, and without any special procedures for capturing 
discontinuities. 

A precusor to the RCM is the finite-difference scheme of Godunov [l]. He 
introduced the use of Riemann problems to computational fluid dynamics, but used 
a deterministic integration procedure for the assignment of mass averaged solutions 
to the next time level. Glimm [2] kept the Riemann problems in his invention of 
the RCM but introduced random sampling to replace the averaging procedure and 
thereby conserve mass, momentum, and energy. He applied the method as a 
theoretical tool to obtain existence proofs for all time for weak solutions of hyper- 
bolic systems of conservation laws. Glimm’s work is a theoretical milestone, even 
though the convergence rate of his original RCM with sampling by means of 
pseudo-random numbers is too slow for practical numerical computations (node 
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spacing is unfavorably small). The RCM was made into a practical numerical 
method by Chorin [3,4], who introduced quasirandom numbers into the samp 
process and the use of one random number per time step, in order to increase the 
convergence rate (or permit larger node spacings). The RCM was also improved b 
Sod [S], Collella [6], and others, and since the late 1970s it has been employe 
successfully to solve many problems in gas dynamics (e.g., [7-157). 

In these past studies a staggered grid with a uniform node spacing has norma 
been used in the RCM (Fig. l), with few exceptions [6, 46, 171. In fact, a lot of 
past work implicitly suggests that a staggered grid is .the best and most natural 
choice, and newcomers to the RCM adopt this type of grid without question. The 
primary purpose of the present paper is to introduce a more useful nonstaggered 
grid with both variable node spacing and local time stepping. Local time stepping 
means that solutions for individual cells of different width advance in time by steps 
which are effectively controlled by their own Courant-Fredrichs-Lewy (CFL) 
criterion. A technically different but equivalent quasirandom sampling procedure is 
also introduced because it is simplifies computer program logic and helps ma 
local time stepping easy to apply. These new techniques are superior to the 
method of employing a staggered grid with a fixed node spacing which is 
everywhere small with cell solutions all advancing by the small time step. The 
significant savings in computational solution time and cost are illustrated with 
selected problems. The nonstaggered grid with variable node spacing and local time 
stepping for the RCM can also be applied to multidimensional problems such as 
unsteady flows in two and three dimensions, and computational savings for such 
problems should be even more significant. 

In this paper the case of one-dimensional unsteady gas flows is used to illustrate 
many concepts and results. However, these same concepts will apply virt~alIy 
directly to other problems involving nonlinear hyperbolic equations with two 
independent variables (e.g., two-dimensional planar and axisymmetric steady super- 
sonic flows, longitudinal stress wave motion in long or thin viscoelastic rods). 
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FIG. 1. Staggered grid for the case of one-dimensional unsteady flows. 

581/78/L-11* 



162 JAMES J. GOTTLIEB 

2. STAGGERED GRID AND QUASIRANDOM SAMPLING 

As in most explicit numerical schemes, the RCM integrates the hyperbolic con- 
servation equations by computing the solution at a new time level by using the 
solution from the old time level. A staggered grid generally employed to solve one- 
dimensional unsteady flow problems with the RCM is shown in Fig. 1. The spacing 
dx between adjacent grid nodes at each time is constant. The jth time step dti 
between time levels tj and tj + Atj actually consists of two time steps, each of equal 
size Atj/2. For example, the first half-step uses known solutions at nodes i Ax and 
(i+ 1) Ax at time level tj to find the solution at the intermediate or staggered node 
(it- l/2) Ax at the next time level ti+ Atj/2. The second half-step is used to get the 
solutions at level tj+ , , back at the original node locations (e.g., i Ax), as indicated 
by arrows on the diagram. Note that each half-step in time is restricted by the CFL 
time step criterion for computational accuracy and/or stability. This time increment 
is normally determined for the first half-step and then simply held constant for the 
second half-step, mainly to reduce computational effort of recomputing the new 
time step. Boundary conditions also have to be applied at the left- and right-hand 
sides of the grid, in the same manner as for a nonstaggered grid, and these will be 
discussed later. 

The solution at a half-step is related to the previous half-step by the solution of a 
series of Riemann or initial value problems, and in the RCM these solutions are 
sampled for each cell in the computational field to advance to the next time level. 
The Riemann problem for one cell is normally written as 

U(x, tj) = u(xi, tj) if x< (i+$) Ax, 
u(xi+ 1)  tj) if x>(i+i)Ax, 

where U(xi, tj) and U(x,+ r, , t.) are known initial data at the nodes (xi, tj) and 
Cxi+15 J t.). Hence, the initial data U(x, tj) is piecewise constant; it equals either 
U(Xi, tj) or  u(xi+l, J t .) and contains a discontinuity at the cell center. With increas- 
ing time beyond tj this discontinuity will break into leftward and rightward moving 
waves that are separated by a contact surface. Each wave can be either a shock or a 
rarefaction wave, and this results in four possible wase patterns that are self-similar 
(i.e., depend on x/t only), as shown in Fig. 2. (A special fifth case of two rarefaction 
waves and two contact surfaces separated by a vacuum is not considered.) For a 
specific set of initial conditions given by U(X,, tj) and U(x,+,, t,), the solution of 
the Riemann problem for the resulting wave pattern and wave strengths can be 
determined by some convenient iterative procedure. However, Riemann solvers 
[l, 3-6, 12-141 are neither needed nor presented in this paper. 

Once the wave pattern, wave strengths, and flow properties in each zone between 
the waves and contact surface are known, random ampling may be applied to 
choose and assign a solution to the intermediate or staggered node for the next time 
level. A random number 52 in the range from 0 to 1 is chosen from a uniform 
probability density distribution, and a point q at time level tj+ At,/2 (shown as a 
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FIG. 2. Four possible wave patterns in the solution of a Riemann problem, showing shock (Sj and 
rarefaction (R) waves separated by a contact surface (C). 

cross in Fig. 2) is located according to xy = (i-t a) Ax. The chosen solution from 
point q in the wave pattern is then assigned to the intermediate node at time Ievel 
ti + At,/2. 

Now consider this random sampling in more detail, for staggered grids of 
uniform node spacing for which the node at the next time level is located at the cen- 
ter of the cell and also off-center. The range for point q at which the wave pattern is 
sampled at the new time level tj + At,/2 is illustrated in Fig. 3. In Fig. 3a the 
assignment node is at the center of the cell at the location (i + I/2) Ax, an 
sampling point q located at x, = (i + Q) Ax varies linearly from the left side 
cell (G? = O), through the center of the cell (Q = $), and over to the right si 
cell (Q = 1). The width of the sampling point range is equal to the constant node 
spacing separation (Ax). 

In Fig. 3b the assignment node is off-center at the location (i + 3.) Ax, w 
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FIG. 3. Random sampling for the cases of an assignment node in the cell center (a) and off- 
center (b ). 
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0 ,< 1~ 1. The sampling point q located at xy = (i + 2 - 3 + 0) Ax takes the linear 
range from (i + 2, - t) Ax to (i + A+ 1) Ax, which again has a width equal to the 
constant node spacing Ax. However, the random sampling is no longer confined to 
only one cell which contains the assignment node at (i + A) Ax, as shown in Fig. 3b, 
but also includes an adjacent cell on the left (A < 4) or right (A 2 1). In this case the 
random sampling covers the parts of two separate wave patterns from adjacent 
cells, and these patterns are the solutions of two different Riemann problems. If 2 is 
equal to either 0 or 1 for the case of a nonstaggered grid the random sampling will 
then span abutting halves of two adjacent cells, and exactly half of each wave 
pattern will be sampled [16]. 

Now consider the most general case when a grid has staggered nodes that are 
nonuniformly spaced. Let the minimum separation between two adjacent nodes be 
denoted by Ax,, and let the CFL criterion dictate the time step dr according to 
AxA K,,,), where Max is the maximum value of Iu[ + a for all nodes. Let the 
cell of interest which contains the assignment node have a width Ax, and let the 
cells on the immediate left and right sides have different widths denoted by Ax, and 
Ax,, respectively, as depicted in Fig. 4. Let the assignment node be located at a dis- 

a) 
0 

F- --- 

FIG. 4. Random sampling for cases A and B when the assignment node is well inside the left part of 
the cell (a) and near the near the left boundary (b). 
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tance /z dx inside the center cell of width dx, at the next time level, where 0 6 n 6 1. 
In this general case the random sampling is much more complex than that encoun- 
tered for a uniform node spacing, because the width of the sampling range is not 
obvious and the sampling in this range is no longer linear across abutting cells. In 
the present approach the random sampling is subdivided into three cases for clarity. 

In the first case (A) the assignment node lies well inside the cell of width dx such 
that Ax,/2 Ax d /z d 1 - Ax,/2 Ax. The random sampling will include all of t 
wave pattern inside this cell, but the stretched or reduced sampling range outsi 
the cell will be too short to overlap the patterns in the cells on the immediate left 
and right sides. This case is illustrated in Fig. 4a, for the case of I < 5. For random 
numbers in the range 0 6 Q < +- 1 the sampling does not overlap the pattern in the 
cell on the left, and the state for the node at x = 0 is then assigned to the 
x = 1 Ax (for the next time level). The same assignment occurs if 4 - 
1 - Jti - Ax,/2 Ax, because the wave pattern in the center cell is not sampled 
other hand, the state at the node at x = Ax is assigned to the node at x = I Ax if 
1 - L + Ax,/2 Ax < Q < 1. Consequently, the pattern within the cell of width Ax is 
sampled and assigned to the node at x= 2 dx only if the random numbers lie 
within the range 1 - I - Ax, /2 Ax < 52 < I- Iz + Ax,/2 Ax. The Riemarm problem 
need only be computed if the pattern is actually going to be sampled. 

When R > + for case A the sampling range is shifted to the right. The random 
sampling now occurs entirely within the center cell if 0 d Sz < 312 -i, and the 
tern in this cell is sampled only if 1 - A- Ax,/2 Ax < B < 1 -i + Ax,/2 
IBecause this is a mirror image of the previous case of ;1< 5, the additional de 
are easy to construct and thus omitted. 

Pn the second case (B) the assignment node lies sufficiently near to the left si 
the center cell of width Ax such that J. < Ax,/2 Ax. The random sampling can now 
include data from a part of the wave pattern in the left cell as well as data 
from a part of the wave pattern from the center cell, depending on the value of 
the random number, as illustrated in Fig. 4b. For the random numbers 
0 d Q < (Ax,/2 Ax-J,) Ax/Ax, a right part of the wave pattern in the left cell is 
sampled, whereas for the random numbers 1 -A - Ax,/2 Ax < D < 1 more than 
half of the left side of the wave pattern in the center cell will be sampled, For the 
remainder of the random numbers (Ax,/2 Ax - 2) Ax/Ax, d l9 I- ,I- Ax,/2 Ax 
the state for the node x = 0 is assigned to the node at x = I Ax (for the nex 
level). Note that the random sampling in the left and center cells are done wi 
ferent scales, as depicted in Fig. 4b. The scale for the center cell is the same 
shown in Fig. 4a, and the scale for the left cell is different by the factor AxJAx. 

In last case (C) the assignment node lies sufficiently near to the right side of the 
center cell such that 1. > 1 -Ax, /2 Ax, and the wave patte in the right cell may 
be sampled. This is essentially a mirror image of case and the details are 
therefore omitted. 

A few comments regarding these results are worthwhile. First, the ~a~~~rn 
sampling for the staggered grid with nonuniform node spacing is fairly com~~e 
compared to that for uniform node spacing, and a naive straightforward approac 
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of linearly sampling across both cells would be incorrect. Second, the results for the 
staggered grid with a nonuniform node spacing will reduce to the earlier results for 
a staggered or nonstaggered grid with a uniform node spacing. Third, a staggered 
grid constructed of an adjoining fine and coarse node spacing will always have a 
node off-center at alternate time levels at the fine and coarse mesh juction. For this 
peculiar cell with the off-centered node at the next time level only case A is actually 
needed in the random sampling process. Finally, the random sampling for the 
general case which involves cases A, B, and C gives the RCM the capability for 
adaptive gridding. Nodes at new time levels may not only be increased or decreased 
but may also be placed at any given spatial locations, although suitable algorithms 
for automatically allocating and positioning nodes would be required. 

Before leaving this section it is worth mentioning that the random sampling in 
the RCM is really a Monte Carlo integration process; it is not a Monte Carlo 
simulation of a purely random process. Consequently, quasirandom numbers 
instead of pseudorandom numbers may (or should be) incorporated to accelerate 
the convergence rate or improve the numerical accuracy for a given node spacing 
[6, 18, 191 (for which the error is of order dx lln(dx}l in contrast to Ax’/’ for 
pseudo-random numbers). The best possible quasirandom numbers for the RCM 
are presently those of Van der Corput [19,20], because they are well 
equidistributed. In order to preserve this improved convergence rate or accuracy in 
the quasi-Monte Carlo integration process, only one quasirandom number is used 
for all Riemann problems at one time level [3]. 

3. ALTERNATE QUASIRANDOM SAMPLING PROCEDURE 

An equivalent but technically different quasirandom sampling procedure is now 
described for a staggered grid with either uniform or nonuniform node spacing. As 
with the previous sampling technique, at any time level the flow held may be 
represented discretely by the flow properties at a finite number of grid nodes. 
However, in the construction of the Riemann problem between two nodes with 
initial data (e.g. i Ax an (i + 1) Ax), the actual position of the discontinuity or mis- 
match in the constant states U(x,, ti) and U(x,+ i, ti) may be considered unknown. 
In order to insert this discontinuity, one may assume that it has an equal chance or 
probability of occurring in each subinterval of the cell length dx. The Riemann 
problem may then be expressed as 

U(x, tj) = 
{ 

uf,xi, tj) if x<(i+Q) Ax, 

u(xi+12 tj) if x>(i+Q)dx, (2) 

where Q is a quasirandom number in the range from 0 to 1 (chosen from a uniform 
probability density distribution). For a particular set of initial conditions given by 
U(Xi, tj) and u(xi+l, I y t.) the Riemann problem may be solved to obtain the type of 
wave pattern, wave strengths, and flow properties in each region between the waves 
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and contact surface, and this pattern can then be mapped onto a time-distance 
diagram, as illustrated in Fig. 5. Now, instead of sampling the wave pattern 
solution and assigning it to the node at the next time level, the solution of whatever 
part of the wave pattern that overlaps the staggered grid node at the next time level 
is assigned directly to this node. This node may be located exactly at the cell center 
for a perfectly staggered grid, as depicted in the left pattern, or it can be lo 
more generally anywhere in this cell at this time level, as indicated in the 
pattern. 

If the assignment node is located in the center of the cell (A = i), then the wave 
patterns in the cells on the immediate left and right sides of this center cell cannot 
overlap this node, because the CFL time step criterion is obeyed. Therefore for 
0 B D < 1 the wave pattern for this cell will be the only one sampled. If the 
assignment node is off-center then the pattern from the cell on the left side may 
overlap this node (J. <I, D > d + $), or conversely the pattern from the cell on the 
right side may overlap this node (1” > f, D < A - 4). These results correspond to the 
simplest case of a uniform node spacing. 

The extension of the alternate sampling procedure to the case of a grid with a 
nonuniform node spacing is rather easy, in contrast to lthe corresponding extension 
in the last section. If the assignment node lies well insidie of the center cell of width 
Ax such that Ax,/2 Ax d ,4< 1 -Ax,,, /2 Ax, which corresponds to case A of the 
previous section, then the assignment can come only from the pattern within this 
cell. Furthermore, the pattern is sampled only if 3. - Ax,/2 Ax -=c D < ,I + Ax/2 Ax. 
For case B for which A < Ax,/2 Ax the assignment node lies sufficiently close to the 
left side of the center cell such that the assignment may come from the wave hatters 
in the left or center cell. The assignment is from the left cell if 1 - Ax,/2 dx, 
iLA/Ax, < 52 < 1: and from the center cell if 0 <Q <A + Ax,/2 Ax. For case C wi 
,? > 1 - Ax,/2 Ax the assignment is similar to that for case B, and the details are 
omitted. 

The previous and alternate random sampling procedures are not only similar but 
equivalent; in the previous method the wave pattern is fixed at the cell center 
time level and the sampling point is moved randomly at the next time level, w 
in the alternate approach the pattern is moved randomly while the assignment node 
is lixed. However, the alternate sampling procedure is easier to implement in com- 
puter programs (significantly fewer logic and assignment statements and reduced 
computational effort), especially in the case of a staggered grid with variable node 
spacing. 

ih (i+l)Ax iAx (i+llhx 

FIG. 5. Alternate random sampling in which the wave pattern is moved randomly within the ceil. 
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Let the locations of the assignment node and discontinuity be given by (i + /?) dx 
and (i-a) dx, respectively, where fi normally has values between 0 and 1. A 
reference velocity V may then be defined as the distance between these two 
locations divided by a half-step denoted by At, and it will simply be equal to 
(/I - ~2) Ax/At. A solution assignment for the pattern on the left side of Fig. 5 would 
proceed as follows. If V is larger than the rightward moving shock, then the state 
U(Xi,l, J t .) would be assigned at the next level to the node located in front of this 
shock. If V lies between the velocities of the contact surface and the tail of the 
leftward moving rarefaction wave, then the state between the contact surface and 
tail would be assigned to the node which must also lie between the contact surface 
and tail, as shown in the diagram, and so on and so forth for sampling. This helps 
illustrate the simplicity of both the random sampling and assignment of states to 
nodes in this alternative approach. 

4. NONSTAGGERED GRID AND QUASIRANDOM SAMPLING 

A nonstaggered grid for solving one-dimensional unsteady flow problems is 
depicted in Fig. 6. The entire grid width from xi to x, is shown, where m denotes 
the total number of nodes for the numerical grid, but only six time levels from tl to 
t6 are needed for illustration. The spacing between adjacent nodes can be constant 
as indicated or variable, and the time steps between successive levels are also 
limited by the CFL criterion (based on the smallest cell width). 

The use of this nonstaggered grid in the RCM is now explained. Since t, is the 
initial or first time step in the numerical computations, the first step is to specify the 
states U(x,, tl) for all interior nodes (i= 2, 3, . . . . m - 1). One quasirandom number 
is now selected for this entire time level t,, and let this number Q lie between 4 and 
1. This then places the discontinuities at xi + Q(xj+ i - x,), in the right half of each 
cell for time level t, . 

FIG. 

flows 

5 x2 x3 x4 x5 %2 Xm-l Tn 

6. Nonstaggered grid with sampling procedure shown, for the case of one-dimensional unsteady 
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Then a boundary condition for a closed, open, or nonreflecting grid end needs to 
be applied at the left side of the grid (when Q 3 $), along with the known state 
U(x,, ti), to determine the state U(x,, tl) at this outermost left node (xi, tr). No 
specification or boundary condition is required for the right side to get U(x,, ,~i), 
because this state is not required at time level t,. The next step is to apply the C-FL 
time step criterion to obtain d t r = tj+ r - t,, by using the states U(x,, tl) for which 
i = 1, 2, . . . . m - 1. Note that this time step is obtained after the boundary conditions 
are applied, so that this boundary state is properly included in determining the ti 
step. 

The next step is to compute Riemann solutions for all cells, except for the last 
one on the right side (not required), and then map the resulting wave patterns on a 
time-distance diagram (as illustrated between levels I, and t6). These patterns will 
overlap the nodes on the right side of the cell at level t, (or almost overlap this 
node), as illustrated in Fig 6, because 52 lies between $ and 1. Note that these pat- 
terns cannot overlap the left node of the cells because the CFL criterion suf~ci~~t~y 
limits the time step. 

The reference velocity Vi is given by (p - 52)(x,+ r - xi)/dtl, for which /? is unity 
for an assignment to the right node at level t,. (T/, is constant for all cells only if the 
node spacing is uniform.) By using this reference velocity and the assignment 
procedure explained previously, the proper states will then be assigned to the right- 
hand nodes of the cells at level t,. 

This process may be repeated to advance the solution to time level t,, wit 
subtle changes. A second quasirandom number Sz is selected, and it is now a 
to have a value between 0 and 4. This then places the discontinuities in the left half 
of each cell. The boundary condition is now applied to the right side of the grid 
(when Sz < t), with state U(x, _ i, tJ, in order to determine the state U(x,, t2) at 
the outermost right node. The CFL criterion is then used to get the time st 
by using the states U(x,, t2) for which i = 2, 3, . . . . m. Following this step is t 
putations of the Riemann problems for all cells except the first one on the left side 
(not required), and a mapping of the wave patterns on a time-distance diagram. 
Since Q lies between 0 and 4 the patterns will in general overlap nodes on the left 
side of the cells at time level t,. With Vi= (/3-&2)(x,+ i - xi)/dbz and fi equal to 
zero for an assignment to the left node, the proper states may be assigned to the 
nodes at level t,. 

The solutions can be advanced to subsequent time levels by continuing this 
straightforward procedure. If solution assignments are made to the right (for Q B $), 
then the bounary conditions are applied at the left side of the grid, and conversely. 
The outermost nodes at which boundary conditions need to be applied are shown 
as squares in Fig. 6. Note that Riemann solutions should not be assigned t 
boundary nodes (e.g., squares), because the states at such nodes are dicta 
boundary conditions, and these will be wasted when the boundary conditions are 
subsequently applied. 

Sequential quasirandom numbers from the Van der Corput sequence alw 
oscillate from values above $ to values below 5. Wence, the direction of 
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assignement of successive sets of states of Riemann problems from one time level to 
the next also oscillates from right to left. This is illustrated in Fig. 6 (by the wavy 
lines with arrow heads). Pseudorandom numbers and some quasirandom numbers 
other than Van der Corput’s sequence would not produce such a regular 
assignment oscillation or flip-flop. However, this would not invalidate the new 
sampling and assignment procedure for the case of the nonstaggered grid, but these 
other random number sequences would have a poorer convergence rate, unless they 
were better sequences than that of Van der Corput. 

5. VARIABLE NODE SPACING AND LOCAL TIME STEPPING 

In many computational problems the flow in a localized part of the grid has high 
gradients and elsewhere they are substantially less. One example is the case of a 
spherical explosion with higher flow gradients nearer the origin, and another is an 
unsteady flow along a duct with a local reduction in area (of finite length) where 
the flow gradients are relatively large. A fine grid with closely spaced nodes is 
required to accurately resolve the flow properties where their gradients are large, 
whereas a coarse grid would provide sufficient (equivalent) accuracy elsewhere. The 
primary advantage of using variable node spacing with a line grid in parts of the 
flow and a coarse grid elsewhere is the reduction in the total number of cells and 
the corresponding reduction in the computational effort and costs (compared to the 
case of using the fine grid throughout the flow field). For example, if the number of 
cells for a problem with a combined line and coarse grid could be reduced by a 
factor of three, then the CPU time would be diminished by about a factor of three, 
because the time steps would be nearly the same, since the CFL criterion would be 
based on the fine grid. Furthermore, if the computations could proceed for the 
small cells at their CFL dictated time step and for the larger cells at their CFL 
dictated time step, then this local time stepping would further reduce computational 
effort. This is possible in the RCM with a variable grid. 

For the case of a nonstaggered grid with a variable node spacing let the cell of 
interest have a width dx and let the minimum node spacing be dx,. In the last sec- 
tion we have already seen how the wave patterns were sampled and the solutions 
assigned to the nodes at the next time step. Now we will look more closely at 
certain aspects of random sampling within cells to help illustrate how local time 
stepping may be implemented. Two cells of width Ax,,, and Ax are shown in Fig. 7, 
with a wave pattern included. In the case of the smaller cell the time stepping 
always will proceed with the step At = Ax,,,/Wmax from the CFL criterion. The 
wave pattern might overlap either the left node (S2 < 4) or right node (0 2 f), as 
explained earlier. In this case the Riemann problem will have to be solved for every 
time step. 

In the case of the larger cell shown in Fig. 7 the wave pattern will not overlap 
either the left or right nodes if the random number has values in the range 
Ax,/2 Ax < 52 < 1 - Ax,/2 Ax. In this case there is no need to solve the Riemann 
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FIG. 7. Region of no wave pattern overlap with nodes at the next time level in a large cell having a 
width Ax (larger than the smallest cell of width dxmi,). 

problem because it will not be sampled, and this work can simply be skipped. There 
is also no need to do any state assignment, since the state at this node does not 
change from the old to the new time level. The Riemann problem, random sampling 
and state assignment will only have to be done in the proportion Ax,/Ax of the 
time steps for this larger cell, because this is the ratio of the time the random num- 
ber falls in the intervals 0 <Q < Ax,/2 Ax and 1 - Ax,/2 Ax < A2 6 1. This means 
that the Riemann problem, sampling, and state assignment for the larger cell are 
effectively being done at time intervals equal to (Ax/Ax,) At, on the average, which 
is essentially the CFL criterion for the larger cell. 

This is illustrated in Fig. 8, where the numerical grid is constructed of cells of 
minimum width Ax,,, on the left and cells of larger width 3 Ax, on the right. The 
Riemann problem, sampling, and state assignement are done for cells with wave 
patterns shown are solid lines, whereas those that are skipped appear as das 
lines. The state at node xi- r is updated every time level, whereas the node at xi+ 1 is 
updated at time levels tj+ , , tj+ 4 , and tj+ 7. Note that this updating is not always 
this regular, but depends on the random number sequence. 

The technique of skipping over needless Riemann problems, sampling, an 

tj+7 - . . 

tj+6 

tj+S 

tj+4 

tj+3 

tj+2 

tj+l 

5 

FIG. 8. Illustration of local time stepping for a grid with a fine node spacing Ax, on the left and a 
coarse node spacing of 3 Ax,,, on the right. 
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assignments is nothing less than the process of local time stepping. The remarkable 
advantages of this local time stepping in the RCM for a nonstaggered grid with 
variable node spacing is that it is trivial to implement, does not involve any type of 
approximation, and does not reduce the quality of the numerical results. 

In the solution of hyperbolic equations in weakly conservative form (includes 
source terms) by the RCM, the solution proceeds in two stages. The Riemann 
problem for the homogeneous equations is solved first, random sampled, and the 
solution assigned to the appropriate node. For the unsteady gas-dynamic equations 
this corresponds to the solution of U, +f(U), =h( U, x) c o r r e s p o n d s  w i t h 8  - 0  0   T D  3   T r  0 . 0 9   T  ( t h e  )  0 6 5   T r  7 7 . 8 4 2 9 . 1 8 2  - 1 2   T D  3   T r  - 3 6 8  T r  4 4 0   T w  ( u n s t e a d y  )  5 9 t h e  equatio  T8  Tw (fir644.4941ommitt36 0  TD 3  Tr 6149680.2072  Tc 0.0954 566orrespond Tr 19.4whera85e8a5w (wit -0.0946  Tw (gas-d -0.16orrespo54
0  Tr 4U= -0.168tiru..097.83148c -0.0845  Tw8417  Tc -072ds ) Tj[p08olus  Tion )  T398  Tw (The ) Tj
0  Tr 27.8088 0  TD 3 pu08olus  Tion )  T398  Tw (The ) TTr 145e8TDTj
0138TrTD563p/(y0.1517  Tc 0.04  Tw (U, ) Tj
0 (app1 3c 0.9)732 44.4941- -0.168tiru.21605053148c -0.0845  T.097631  Tw (Riemann  1DTj
0  Trr -0.12.9770.2072  Tc 0.095356correspo2810  Tr 4+j
0  Trr -0.11  T353148c -0.0845  T-0 0o ) Tj
052 TD 3 pu*/2] Tr -0.1149  Tc 0.0031  Tw (equationFor ) Tj
0  Tr 24.101 0  TD 3  Tr -0.1Tc 5550.2163  Tc 0.1045 Tr 19Tr 23.174 4s 
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grid their locations are now resolved to within one cell width of the finer grid, but 
they will be accurate only to within one cell width of the coarser grid because t 
originated in this coarser grid. Numerical experiments were also undertaken wit 
rarefaction waves moving from fine to coarse grids and conversely, and no spurious 
disturbances were discovered. 

6. SOME NUMERICAL RESULTS 

The advantage of using different node spacings in various parts of the numerical 
grid and local time stepping is the desirable reduction in computational time an 
cost. Such reductions may be highly significant, as will be demonstrated with 
examples herein. 

Consider an explosion of a sphere of pressurized air in the atmosphere, for which 
the high-pressure air is initially at a uniform pressure and zero velocity. Let the 
sphere radius be 1.2m, and let the numerical computations proceed until the shock 
reaches a radius of 7m. Hence, the grid extends from 0 to 7m. If an accurate 
computation of the flow properties inside a radius of 2m is required, where flow 
properties may change markedly and have large gradients, then a large number of 
nodes such as 100 per meter may be required. If the node spacing was constant 
throughout the grid, then the total number of nodes would be quite large at 701. 
With this uniform node spacing the RCM would have to do 700 Riemann 
problems, 700 sampling assingments, and 700 time splitting corrections for the area 
changes per time step. 

Such a RCM computer run was performed, for the case of a pressure ratio across 
the diaphragm of 7, and some of the numerical results are depicted in Fig. 9a. These 
pressure distributions with radius cover a total time period of 15 ms (every 
0.833 ms). They are by and large very smooth, except nearer the origin where the 
operator-splitting corrections become larger, inaccurate, and thereby introduce 
more numerical noise. This noise may be reduced at any given radius, of course, by 
using more nodes. The CPU time for a minicomputer was 16.6 min. 

The computational time may be reduced by using variable node spacing. Let the 
first meter contain 100 nodes as used previously, because a fine grid is required to 
resolve the steep gradients near the origin. Let the next two meters have 50 no 
each, where the gradients are less steep, and let the last four meters have 25 no 
each, where the flow properties vary rather smoothly (except at shocks and contact 
surfaces). The node spacing is now in the proportion of 1:2:4, and the total ~~rnbe~ 
of nodes has been reduced from 701 to 301. An unrefined RCM program ~~~1~ 
then solve 300 Riemann problems per time level, and also do 300 sampling 
assignments and time-splitting corrections per level, in order to achieve a savings in 
computational time and cost by a factor of about 7/J or 2.33. (The time steps are 
essentially the same in both cases because the CFL time steg prediction will be 
controlled by the smallest node spacing.) 

This RCM computer run was done, and the numerical results are shown in 
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Uniform node spacing 

0-7,~: 100 nodes/meter 

Spatial distributions 
are 0.833 Ills apart 

0 I 
.O 1 2 3 4 5 6 7 

Radius (m) 

b) Nonuniform node spacing 

0 - 1 m: 100 nodes/meter 
1-3m: 50 nodes/meter 
3-7m: 25 nodes/meter 

0 1 2 3 u 5 6 7 

Radius (m) 

FIG. 9. Pressure distributions for the explosion of a 2.4-m-diameter sphere of air at an initial 
pressure ration of 7, computed with a uniform (a) and nonuniform (b) node spacing. 

Fig. 9b for comparison directly to the last case. The two sets of results are for all 
practical purposes essentially the same, albeit there are some small differences. The 
pressure distributions at larger radii are not as smooth (having slightly larger 
undulations or noise), reflecting the slightly larger computational errors from a 
coarser node spacing. The outward moving shock also appears to have a less steep 
front farther from the origin, because it is plotted very simply as a linear change 
between the coarser adjacent nodes. With only 301 instead of 701 nodes, this 
computer run took only 7.6 min, for an overall decrease in computational time by a 
factor of 2.2. This is slightly lower than 3 or 2.33 because some of the computer 
overhead remains identical for both runs. 

Additional savings are still possible by using local time stepping. In terms of the 
present explosion problem, needless Riemann problems and sample assignements 
may be skipped when the random number Q lies between $ and 1 for the coarser 
node spacing of 2 AX,i” and when L2 lies between $ and 2 for the even coarser node 
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spacing Of 4 dXmin. In other words, the average number of useful ~ierna~~ 
problems with sample assignements per time level is 100 for the first zone with 1 
nodes (0 to 1 m), 50 for the next zone with 100 nodes (I to 3 m), and 25 for the last 
zone with 100 nodes (3 to 7 m), totalling on average only 175. As compared to the 
first case of 700 nodes, this would lead to a significant savings in computational 
time and cost by a factor of 4. However, when this was implemented in the com- 
puter program, the saving was slightly less at 3.6, because a few additional progra 
statements are needed, some of the computer overhead remains the same for bo 
runs, and operator-splitting corrections were not skipped. As one might expect, t 
numerical results were virtually identical to those already given in Fig. 9b for t 
case of variable node spacing. IIence, they are not shown here. 

This savings factor of 3.6 for local time stepping should now be compared to the 
second computer run with a savings factor of only 2.2. By eliminating the needless 
Riemann problems and sample assignments, the savings in computational time has 
been increased by another significant factor of 1.7, without any reduction in the 
quality of the numerical results. 

To further illustrate the computational savings made possible by using a non- 
staggered grid with variable node spacing, one more problem is briefly 
This is the case of a constant-area shock tube which is converted into a 
simulator by inserting a set of live perforated plates in the driver [12], 
control the mass flow out of the driver into the channel to produce therein 

IkXXJSSION AND CONCLUSIONS 

The merits of using a nonstaggered grid instead of a staggered one are basically 
threefold. The first advantage is that the “housekeeping” or logic required in com- 
puter programs for the case of a nonstaggered grid is reduced, and this is especially 
true when variable node spacing is employed. The second advantage of employing a 
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nonstaggered grid in unrefined RCM computer programs is the reduction by a 
factor of about two in the storage requirements during computations, because 
values of the state and other variables are now needed at only about one-half the 
number of nodes. More refined computer codes that employ staggered grids can 
and have been programmed to reduce storage requirements [7-E, 121; however, the 
additional effort with more complex program logic is now unnecessary. The last 
advantage is the ease in which local time stepping can be implemented in the case 
of nonstaggered grids with variable node spacing. 

The implementation of variable grids and local time stepping has been 
introduced, and the significant saving in computational effort which can result has 
been demonstrated. 

The most significant advantages of employing a nonstaggered grid with variable 
node spacing and local time stepping will apply in the solution of problems with 
more independent variables, such as two-dimensional unsteady flows. The use of 
the old staggered grid in such problems is particularly cumbersome in computer 
program logic and wasteful of computer storage. Although the RCM has not been 
very successful in solving such problems [3, 191, it is anticipated that this will 
change in the future. 
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